William Henry Bragg
Born at Westward, England, near Wigton, Cumberland, the son of Robert John Bragg, a merchant marine officer and farmer, and his wife Mary née Wood, a clergyman's daughter. When Bragg was seven years old, his mother died, and he was raised by his uncle, also named William Bragg, at Market Harborough, Leicestershire. He was educated at the Grammar School there, at King William's College on the Isle of Man and, having won an exhibition (scholarship), at Trinity College, Cambridge. He graduated in 1884 as third wrangler, and in 1885 was awarded a first class honours in the mathematical tripos.
In 1885, at the age of 23, Bragg was appointed Elder Professor of Mathematics and Experimental Physics in the University of Adelaide and started work there early in 1886. Being a skilled mathematician, at that time he had limited knowledge of physics, most of which was in the form of applied mathematics he had learnt at Trinity. Bragg was an able and popular lecturer; he encouraged the formation of the student union, and the attendance, free of charge, of science teachers at his lectures.
In 1889, in Adelaide, Bragg married Gwendoline Todd, a skilled water-colour painter, and daughter of astronomer, meteorologist and electrical engineer Sir Charles Todd. They had three children, a daughter, Gwendolen and two sons, William Lawrence, born in 1890 in North Adelaide, and Robert.
Bragg's interest in physics developed, particularly in the field of electromagnetism. In 1895, he was visited by Ernest Rutherford, en route from New Zealand to Cambridge; this was the commencement of a lifelong friendship. Bragg had a keen interest in the new discovery of X-rays by Wilhelm Röntgen. On 29 May 1896 at Adelaide, Bragg demonstrated before a meeting of local doctors the application of "X-rays to reveal structures that were otherwise invisible". Samuel Barbour, senior chemist of F. H. Faulding & Co., an Adelaide pharmaceutical manufacturer, supplied the necessary apparatus in the form of a Crookes tube, a glass discharge tube. The tube was attached to an induction coil and a battery borrowed from Sir Charles Todd, Bragg's father-in-law. The induction coil was utilized to produce the electric spark necessary for Bragg and Barbour to "generate short bursts of X-rays". The audience was favorably impressed. Bragg availed himself as a test subject, in the manner of Röntgen and allowed an X-ray photograph to be taken of his hand. The image of the fingers in his hand revealed "an old injury to one of his fingers sustained when using the turnip chopping machine on his father's farm in Cumbria".
As early as 1895, Professor William H. (later Sir William) Bragg was working on wireless telegraphy, though public lectures and demonstrations focussed on his X-ray research which would later lead to his Nobel Prize. In a hurried visit by Rutherford, he was reported as working on a Hertzian oscillator. There were many common practical threads to the two technologies and he was ably assisted in the laboratory by Arthur Lionel Rogers who manufactured much of the equipment. On 21 September 1897 Bragg gave the first recorded public demonstration of the working of wireless telegraphy in Australia during a lecture meeting at the University of Adelaide as part of the Public Teachers' Union conference.
Bragg departed Adelaide in December 1897 and spent all of 1898 on a 12-month leave of absence, touring Great Britain and Europe and during this time visited Marconi and inspected his wireless facilities. He returned to Adelaide in early March 1899 and already on 13 May 1899, Bragg and his father-in-law, Sir Charles Todd, were conducting preliminary tests of wireless telegraphy with a transmitter at the Observatory and a receiver on the South Road (about 200 metres). Experiments continued throughout the southern winter of 1899 and the range was progressively extended to Henley Beach. In September the work was extended to two way transmissions with the addition of a second induction coil loaned by Mr. Oddie of Ballarat. It was desired to extend the experiments cross a sea path and Todd was interested in connecting Cape Spencer and Althorpe Island, but local costs were considered prohibitive while the charges for patented equipment from the Marconi Company were exorbitant. At the same time Bragg's interests were leaning towards X-rays and practical work in wireless in South Australia was largely dormant for the next decade.
The turning-point in Bragg's career came in 1904 when he gave the presidential address to section A of the Australasian Association for the Advancement of Science at Dunedin, New Zealand, on "Some Recent Advances in the Theory of the Ionization of Gases". This idea was followed up "in a brilliant series of researches", which, within three years, earned him a fellowship of the Royal Society of London. This paper was also the origin of his first book Studies in Radioactivity (1912). Soon after the delivery of his 1904 address, some radium bromide was made available to Bragg for experimentation. In December 1904 his paper "On the Absorption of α Rays and on the Classification of the α Rays from Radium" appeared in the Philosophical Magazine, and in the same issue a paper "On the Ionization Curves of Radium", written in collaboration with his student Richard Kleeman, also appeared.
At the end of 1908, Bragg returned to England. During his 23 years in Australia "he had seen the number of students at the University of Adelaide almost quadruple, and had a full share in the development of its excellent science school."
Bragg occupied the Cavendish chair of physics in the University of Leeds from 1909. He continued his work on X-rays with much success. He invented the X-ray spectrometer and with his son, Lawrence Bragg, then a research student at Cambridge, founded the new science of X-ray crystallography, the analysis of crystal structure using X-ray diffraction.
In 1915 he was appointed Quain Professor of physics at University College London. In November 1915, he shared the Nobel Prize in Physics with elder son William Lawrence.
After World War One he returned to University College London, where he continued to work on crystal analysis. From 1923, he was Fullerian Professor of Chemistry at the Royal Institution and director of the Davy Faraday Research Laboratory.
Bragg died in 1942 in England and was survived by his daughter Gwendolen and his son, Lawrence.
Biographical SourceWikipedia - accessed 5 August 2020